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Abstract

{ & TIE USKE OF B-SPLINTS IN THE ESTIMATION
ot
OF POWFER SPECTRA

! l (¥ J. Redney| Grishan meM Jamas R,/ Thompson -
1 .

A class of data windows is proposcd for use in the estimation of rhe power

spectra cf statiouary stochastic precesses,

These windews, which are pencraliza-

tionz of the standard Farzen filter, mie constructed by the use of appropiiatcely
noxmelized B-splines. 1t is demonstrated how this window c¢lass may be co.pute-
tiorally implewented ucing & Vast Fourier Iraustorm alunrithn, TGhe efficiency of
the resulting procedvre is generallv a significant improvement over the statc of
the avt with little additional computer time rCQl:i)'ch

1. INTRODUCTTON

This peper fe coacerned with the problemn of
digitally estimziing the pcwer spectrum of a wide-
sense stationatry, crroadic, stouchastic process
from 8 sample functiou of finite length. Not
long after Cooley and Tukey {51 introduced the
fast Fouricr transform algovithm (FFT), its appli-
cation to the estimation of power spectra was dis-
cussed by Bingham, Codfrey, and Tukey [2] and by
Welch {18]), They suggested 2 method based on com-
plex demodulation and pointed out the computational
speed advantages which can be obtained by using
the FFT for computing Fouricr periodograms. Welch
proposed & direct method which has become the
standard numerical approach to the problem of
pover épectrel estimation, This procedure has
three parts: subdividing the avatlable data, using
a data window te compute a amoothed spectral esti-
mate for each segment, and averaglng these smoothnd
spectral estimates. The present paper proposces

a class of data windows lerived from the bespline

~
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basis functions of Schoenberg (18], Ewpirvically,
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the result of using these detlo windows is 2 oi9-

nificant improveaent ir estinates oi power spectia
without a noticesble increasce in the computsticnal
effort, We have chosen to usc continvous notatficn
throughout ; conversion to discrete feornulae where

appropriate is straightforward,

2, PRELIMIMARIES

We first outline some basfc notation and re-

sults uhich are assumed. Here we follow Stein avd

Weiss (16]. 1}

Lebasgue messurable functions which are (Lebesgue)

denotes the Ranach space of

integrable over the real line R, For fC11, the
Fourfer transform of f 1Is the function defined
by

o) = 7 f(e)e 2 M G

for all S€P where i1 = /-1, 7he notation
(...)* denotes the Fourier transform of (,..).
For f,g,El?, the convolution h = frg {s detfved

as the functioas h¢1L} gaiven by
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ney = 7

. f(?-t)g(t)dt

for all “€FR. If F.afL, then (fag)" = fg.
Similarly, (fu)" = [%3 provided the functions in-
volved are such that all operations make sense.,
For a >0, 4, represents a dilation operator,
i.e,, A, f(t) = f(at), Whenever f,gt Ll. it
is clear that

P8, () = L s ((fep) (D]

apey o 1 e
and (5,075 = 28, B .
We shall consider a sample function x(t)
on a finite interval, - ; <t< ; unless

otherwise stated, of a stochastic process
[X(t):-»<t<mw}, We assume this underlying
stochastic process to be wide-sense stationary
(Doob{8}) and ergodic. For simplicity we take
the mean value to be zero. let X(t) have the
spectral density function P(f). The terminology
related to spectral aralysis used in this paper is
senerally that of Blackman and Tukey {3},

[t is apparent that high resolution and
stability (small bias asd variance) are desired
qualitics of power spectral estimates, However,

A cempromise hotween the two must be made. I[n
ordur to uhtain a stable spoctral estimate using
the classical indirect method, an appropriate
function of lag must modify the sample autcco-
variance tunction, Fundamentally the tndirect
methol estimates P(F) via

NG fivc(Tun(r)e’z”‘f’ dx
where 1.(v) is the finitely supported lag window
and (7)Y is the sanple autocavariance Unnction
(r-lehy2 - .
c(ry - Far-lrly/2 x(tfj)x(t-f)dc.

Usually the support of 1.(7) is much less than
the entire interval -T<r<T .,

The ar:umeonts for using lag windows (e.g,,
see Jenkins ard Watts [10]) can be adaptod ta
show that a procedure vhich utilizes the FFT to
estimite power spectra divectly shonld incorporate
a data windew, That {5, for a direct procedure
to have a proper halance between resolution and
stability, the data itsell must be modificd by a

sultable tunction of time, Thus, basically the

86

-
~ -
FFT i3 uged to wvaluate \\\‘\\\ ¢ o
~. .
v ~o b
. Az -2m ~ ,
P () = ;l W(e)x(t)e ftdt‘2 Sl /
d.n, T - 2 ~a

at discrete frequencies where HW(t) (s the
finitely supported data window,

The end result of either of these modifica-
tions is that we in fact estimate smoothed values
of P(f). More specifically, if we let P,(f)
represent the estimate cumputed by either the fn-

direct or the direct approach, we have
avg[P, (£)]= Q(£)=2(f)

where the average may be taken either over the
ensemble or along time [3]. Q(f) is called the
spectral window corresponding to the window used
in the computation,

The direct and indirect approaches to esti-

mating the power spectrun of a stochastic process

are not fundacentally different,  Dlaekman and

Tukey {31 have derived the corscction hetween a

data window (t) ard irs "eq:ivralent’ lay win-
dow L(-). ‘his relationship turns out to be the
correlation integral

1 .
T.() = T WLVt 7)de

By "equivalent" we wean that the appropriate use

) "

of the respoctive "cquival:mt"” windows vields
pewer spectral nstimates which are cqual in ox-
pectation, Note that if the Jdata window is an
even rfunction of time, then the equivalont lag
window is proportional to the convoluticn of the
data window with itself,

At this soint it should be ¢lear that (o che
indicect method, the speectral windew Q(f)  cor-
cesponding to the lag window L{-) g sinply the
Fourier tran:form of LY, Yor the diveet mechod
it chen follous that the spectral window Q(f)
corresponding to the data vivdew W(t) {4 wiven
by Q(f) = %II(()‘r where 1(f) is defined to
he the Fenrior transform ot W(t)., 1(fY s
called the frequency window correspordin: to

W(t). We apain refer the realer to Klackrman and

Imkey [31.

ans.



3. STLIMNE DATA Wrnpous
$.1 0 MOTIVATION
Ir light of the vrather sivple relaticaship
between a data window and its equivalent lav win-
dow, one should ot isnore the extensive ¢ifcrt
vhich has been put into the construction of lay
windowss by numerons authors vor the propertics of
those windows., Sce for cxanple the compilation
piven by Jenkins [9] or by Yarzen [12,13]).
For instarnice, recall the continuity class to
which these functions belcug, In particular we
ohscerve that one of the lag windows which has heen
proposed by Parzen [13] is proportional to a di-
lated, fourth crder B-splinc basis function. Oune
of the two data windows suycested by Welch [18)
- has the.shape of a second ordui Bespline Lasis
function; he recognized that his proposed vindow
yields the Parzen spectral window., Henceforth

we will refer to this window which is given by
- el T
J;(l - ?7?) , ’L’:if
Wt )
0 , otherwise

as the Parzen data window, even'though it is also
a member of the family of spline windows proposed
in this paper. Today, Welch's pracedure (de-
scribed in the introduction) incorporating the
Parzen window is undoubtedly the most widely used
method of ditect power spectral estimation.
Bingham et al {2] proposed the follewing data
window which is continuous through the first de-

rivative:

2

% 1 |t|s.6T
wit) = ‘[;;[l—cos(s,—;: (T-2|tl))] , ar<telcst

o, : otherwise .

We have nommalized this window properly although
this was not done in {2].

From another point of view, we note that
under the Fourier transform operator the effect
of an occurrence at one point in time tends to be
spread over all frequenciee, Furthermore, time
functions with corners have Fourter transforms
that have a "ringiny" effect. Thus {t seems de-

sirable to have 8 deta window of 8 high continuity

class vo that the pedific? sample function coee

smoothly to yera at its ends,

Such corsiaerations motivate ¢ne te exaniye

the possibility of usicr data wirdows based apon

higher order Basplioe besis fvncticoe, A prelin-

inury survey is encouraging,  Fivse we pay choon

the desired continmity ¢lass,  Soearnddly, th

pont

neospectral wirdowe haeve the shape ('

so that the magnitude of the side lobey rapidly
decreases relative to the wain poak as the contine
uity (ov order k) increases. Tt aldition, all
spectral windows are of nen-unceyetive type (Parren

{131).

alyorithin which can he need for accurately cvalu-

hirdly, deboor {71 has devived e peneral

ating any erder Bespline basic function with anv
interval of sopport and at any mest length,
3.2 THE PUNDCMENCAL SPLTHT FUNCTTONS

Schoenbery, [14] introdaced the spline fune.

tions in 1946 with the followine definition, Vith i

Jdy (L) co-

k a positive integer, 8 rcal function

fired for 211 t€F is called & splive furctic

of order k or degree k=1 it it has the folloe- i
ing properties: i
() A(t) 1is of class C* 2 (F), ! ;
(11) A (t) is composed of polynomial arcs of 3
degrec at most k-1 , {
({ii) The polynomial arcs arc jnined nowhere other {
than possibly at integers n {f k is cven ;
or at points n+3 {f k fs odd. The
spline fs said to have knots at these peints,
If we define
yro, y>o0 ‘
= '
0 »  y<0
1-1 !
with exception of the special case 0, -~ $ and
let 6% represent the kth ovder central ditte:- ‘

ence operator with unity step, f.e., 8 {(y) =
f(y) and & f(y) = 6¥ 77 f(y+d) - 67V (y-0)

for k = 1,2,..., then the function

M, (t) = T:%TYT Kktikl

{s easily chown to be a simple cuample of a splive

My ()

function of order k., is called the funda-
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mental B-spline hasis.f\mction of order k . We
list a few of Lhe many importart properties of

M, (t) and refer the reader to Schoenbery [14,15],
Curry and Schoenbery [6), and to deBoor [7] for
these and other properties. M, (t) s positive

in the open interval - ;,% ) and, identically
zero elsewhere; it has knots at - E%—v where v
is an integer gatisfying 0 <v<k, M(r) s
an even function, and its integral over R s

unity. My(t) also has the ropresentation

k =V k-1
meo gy Sen” () f )

For example, the fourth order function is given

by
1 3 _2f e\
6(z-m) 3(1 m) . lel<
X :
6

My (t) = (z-ltl)3 J<lel<2

4] ,otherwise,

We shall require two intenral proparties:

R sin wEAK
(o) - (*3 ‘-‘.‘.55:)

and CLAMO(T) =M, ()

3.3 [ PROPOSED CLASS OF DATA WINDOUWS

3.3.1 [nLroduction”

ThcAclass of spline daﬁn wfndnwé we propose
consists of the {undamental spline functions each
dilated so that its support is equal to the length
of the sawple {unction and normalized so that the
total power of the data remaing iavariant when the
spline data windows are apnlied, 1t we let C,
tepreseat the nwormalization factor, then we can
use the results of .the previous seclions to ob-
tain the fullowing table of oho spline data win-
dows and of the correspouding frequency windows,
lay, windows, an! spectral windows,

Since the total power + {8 siven by
W _"Y/’ x“(t)dt = T var[x],
-1/
wue seck constants Cy  depending vwpon the order

it of the spline data window such that also
R o
@ - TF e Moo e
vy

where we use the tilde to indicate an un-normal-

ized window,  The expectation ot this cquation is

Yo

= o BN (OIExT (L) 1de
-2
- 'b
= ¢ var(x] Qi(t)dt.
-y
. ]
Chanping the variable of integration we obtain

bed 14"’ -~
Cy = k/.l Mo (t)de
“,
An gpplication of Parseval's theorem yields

ot oK
< [, sefsin uy
(,i i Fk/! (.-~_ du.
ol u

Therefore, we can calculate the appropriate nor-
malizing factor for any order spline data window:
¢, = 1.0 and
k-1 1) T (k-i)° Ce=1) '%
¢, =12 = .(...)_.LI - .—L.———-—l for k~2,
(=~ 11 2k-i-1)! -
Norwalizing for iavariance of total power is
ecquivalont to the regquirement

RIGLIIERD
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Data Wiadow

. B 413
W, (1) Calyte(t) “-"*(T)

Prequency & T I TASTNY R
Window C‘(q) Fv [(lfll;iw) ]A
. ~f
1.(f) X

c ¢ /sin("fT/k))k
4

T
e ey

Equivalent SR M " ]

Lay, Wdivdow { [k 6V;’x<‘)

L (7)

¢ k-
—_— ‘\: -
PR RN

Spectral !C}\ r TR
Window \k./ v ﬂ/‘ ST _

(1)

) (:iu(“fr/k)) 2

TABLE 1,

A camd . 2ISR,




3.3.2 Resolution and Stability Censiderations

: . D6
The convergence proprtics of the spline bt

windows nre rather sieple, Clearly for any Kk

P fsia(efi k)N N ‘
Vim Qi (f) = lim it [eniii/ky | ;
g T | ~{1/k 0.6 ¢k :
v, fF0
®» f = ¢

aned ;'.»:g‘ Q, ()dt I for alt 1. 227

s, oas the extent of the saxnle function s

increased, the spectral vindew coaverpes to the

Dirac deltu function (distriiation), aad there-

fore the dota window is converging to the cou-

v

=i
<

stant function identically cqual to unity,

Figure I illustrates scue of the spline

Figure 2 .

Spectral Windows

Iealoe . .o P . .. P BEER Y K - P .
data windows; the covresponding spectral windows Q !
1
are shown in Figure 2, In Figure 3 the spectral Q
2 L ———
vindows have been plotted on a logarithmic scale
Q —_————
in an aticapt Lo represzent the extreme differ- Q
R i - e e e e
cuces rwte cleatly, Q
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3.0 e - . _——
X
\ -3

A AN
J ?\\

\\\ /K‘j’\

Logarithmic Scale

W \
\
1.0 \\ \ / W\ A
L, X \\ AN
\ \\ /
\\\ \\ ) . \ J
\ \\ \ \ \ %
\\ . \ \ \
0 PG - P = &1 .
] T T a1 T o 3 6 9
8 4 8 2 o T T 4
Figure 1. Data Windows
Wy Figure 3. Spectral Windows as in Fig., 2.
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We point out that W, is simply a truaca-
tion function, 1, is the lag window supuested
by Bartlett (1], and Q, {is the correspoaling
Bartlett spectral window, Wy, L,, and Q, ore
respectively the Parzea data, lay, and spectral
windows,

Fuc the problem of bnlancing the resolution
and stability of power spectral estimates, ox-
plicit expressions for the bias and variance of
saoothed estimators have been developed in the
literature, Jenkins and Wates [10] and others
wive these expressions for the icdirect computing
nothod, Nuich {17,18) derives the expected value
and variance of the discrete, directly computed
estimates For a stochastic process which is
Gaussian, ia addition to our previous assumplions
about the process, In cach case some propevty of
the window beiny used fse explicitly involved,

e practitionere, however, oceds seme device to
atd in the selection of a wiandow that will yield
tocomprorise suitable for his pucposes,  The most
congmn weasure of windows is cailled baadwidth (by
madogy with filtering problens).

Several definitions are used tfor bandwidth,
slackman cmd Fukey [3] wse instoad the term
cquivalent width, which they define to be the
ratio of the square of the atvral of the spec-
tral window to the integral o {ts square.  (f
wir define

4 2
vt [T e,

then the equivatent widrh is jiven by

By ()

-3 o
_Qand 1} .

tenkins and Watts (10] detine Heoadwidth to be
the width of the rectangul e (svectrat) window
for which the vactance ot the iadivectlv computed
ioectral cstimate i the same a5 it {3 tor the
riven window, This deftuition of bandwidil vields
frol

Mm@ -1
As has been noted, tor a properly normalized

window ‘. IRISBAN 1, therefore B 5B, o We

L]
meation By for its applicaticy to the spline
tag windews given in lable 1, However, its Jde-
Tiniog properts is no loagor true far the direct
method of computation which we advocate. For

the class of spline windows we have

Vo= o Qi(nde

=0

(-1 )T

TUERSTD Y -

Thus B (Q,) is easily deteraincd by inverting
fy . By using least-squares techniques for
k =3,,..,34, we obtain the approximation

By (Qu) s (L.08¢K)S *% = 0,52)/T .

Parzen ((3] defines hoandwideh as the width of a

rectangte yhich has the same avea and =

e onaxd -

mia height as the givea spoctea! windod,  There-
fore T ononar
[ e

wax Qt)

md for the spline wintows we have

TArather copmonty wse? aeasnre of boadwidth is the

distance botween the nalf-power points ot the
spectral window, s, for an even spociral win-
dow contered gt v -, By towhere T s
the fir:st freareney soch that Q(‘:r) A’ Gy, Tet
fol-1  reprvescnt e wherical Besael fanetions

of the tirst kind, then

iy ‘/.,(
3000 l‘ i:’[-(_) ]

Appronic ations e b el e ot paie .

refe,e et tahis e

R B I R AR (U

quentiy retorenco s e sade o the e natom

hotw-cn *he first o ol avvs vl sradows,
The ceraes o D00ty coenr ot oty have

I R Y TR IR S PR
vardi wes caathors oo e thot (e Y ias
ot amecthnd i etra' atrwators {acre ades g% the

bandwidth o1 the windoy jacreaas, Sut that the

variavee 15 iaversel s ppopartional 1o ihe hand-

POUDESUP N R, 0
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Codth, L ocan also be argu o that the bandwidth
rotne window rustobe at feast oas osoalloas the
W th ot the anmrrowest dwporto nt detar ! ju o the
N FREN
dable 2 ois a compitation of the various con-
staits essociated with the spline winlows given
v tante Towith order wp to k=21,
_(-"1—‘—:-1 | Conrtart Pandeidtis v 7
R N ’—f;;"——'— RO Y Y )
“«:—~- 1,070 1,500 1,00 BT
? 1.7320 1.8343 1.3313% 1.2757
3 2.39%45% 2.3037 .07 1.7 10
A 2.69%7 2.08%7 1,915 1,8701
5 3.4053 3.020% 2,1521 2,0830
- b 3.9 3.3 IR ETS 2.0
l7 46,3770 3.5974 2.5570 2.4168
8 4 B3AR 3.853¢0 2.7%79 T.5853
9 59,2785 4.09130 2.0071 RARN
1 57100 43209 | 3.0089  2.8930
11 6.1312 4L,9365 3,214y 1,081
12 6,527 Aoibed 3,303 LR VAR
11 6,9758 4, 9306 3.503¢ 3.3011
14 7.3413 5.1292 3.6367 3,6264
15 7.7293 5.3121 3.7657 3.5473
16 8.1118 5.4890 3.890%4 36041
17 8.4880 5.6602 4.0113 3.7774
18 8.8587 5.8265 54,1286 3.8873
19 9.,2243 9.9882 &, 2027 3.9943
20 9, 5451 6. 1450 4.3538 4, 0384
21 9,941, 6,2990 4. 4621 . 2000

TABIE 2.

3.4 COMPUTING WITH SPLINE DATA WINDOWS

Fxcept fot the choice of data windows, the
rethod woe propose for computing power spectra is
that of Welch {18]. Departing from our couven-
tion, we assume that we now have a sample fvuc-
tion x(t) wowver the interval 02t S, Using
for example a bandwidth criterion, choose the
nrder k of the spline window to be used n;d

then the vindoe Tenpth 7, Subdivide (1) intao

N segments cach of length T aud with a dis-

placcment D Letwern the tnitial points of con-

secutive segtvnts, Denoto the sopants by st

Thus (N 1) ¢ 07 = 8§, and

}:_‘(t)--x(t-!(j--.')!)4:;~)!ur [ S

Weleh wses the chosce of Doonly as a parancte:
to dincrease the stabilivy of the rvesulting esti-
nated power spectiet,  In the ¢are of spling win-
doss an addition»] consideration should be malie,
MOOoD-T, sowe of the data is weishted substan-
tinliy heavier thaa the remainder,. As can be
sven from Figare 1, the inequity is more pro-
nocnced as the order of the spline vindow in-
creases in the sense that the spline data win-
dous become progressively more peaked. Since
onge nornnlly assvowes that all portioas of his
dota aie cqually Topresentative of the stochastic
process, intuitively the ovder of the spline
window should also influence D, 1n practice a

good rule of ‘thush for relatively short saiple

N
furctions seerrs te be D=7 for k-4, B ; i
for k=10, and D= }T for k- 20 with the

o+

overlap for other order windowr tasdd on theso,
€
Next compute the smoothed spectral estimates

-2niftd

1 5
Pof) = ={7 x, (O (t)e R S FOUIS N
P

T,

Finally, the }stimuted powsr spectrum is given by
() =& 1PN .
3=
Regardless of the order of spline window

used, P, (f) 1is obviously a consistent estima-
tor of P(f) (at least) whenever the stochactic
process §s Gaussian, o sce this, the express-
ions for E[P,(F)] and Var(P,({)] as given by
Welch [17,18] need ouly be compared with the
convergence properties of the spline windows as
diccussed in this paper. ihat v, as § o wve

have the following type convergence for a sta-

tionary Gaussian process: if T-e such that

1 .
50, then E[{(¢(f)- P (£N"}=0.

In implementing this procedvre on a digital
computer, one could derive a closed form for the

R-<1line bonis functions like thut given pre-




! viously for My(t). However, for a general pro-
3 grom aad one that would undoubtedly be numeri -
"

catly preferable, the alporithm of deboor {7} is

recompended for evaluating the spline functions,

U course, by syruetry only half the window need
be diveetly evaluated, Brigham (4] thoroughly
discusses the use of the V™ for cuwpnting the
discrete Fouricr transtform which approximates

the Fourier integral we used in writing P, (£).

4. EXPERIMENTAT, RESULTS
The cffectiveness ot the aspline data windows
is readily appareat from experiments with machine
generated autoregressive processes,  Power Spec-

tral estiuates couputed using various order spline

Il abe bt bt DR el s i 4 o

data windows are comparced with those which used

o v

the Bingham-Godfrey-Tukey and Parzen data windows

i and with estimates computed by the indirect method

s

. R . .
i and Tukey incorporating the Hanning

of Slac

by

ftaz windev [3].  the estivates wore totaalized
Fdividing out ths vaviceces of the teeh side proe-
cossy os s customary vhen one=sidod power spectra

are uscd, the magaitude has been doubled,

Yor these experiments we used sowple func-

tions ot ~uturevressive processes which were

machine gronerated according to
’ 3

LS S 2N SR PO P2
e 0

where o is the order of the process, f{o,} are

S the regression coctfficients, and ¢, is a white

notsze process with Efs. ] -0 and Var
‘e particalar processes Ghich were wsed in the
itlustearions had the following coetficionty:
B (i) vicst order, 0 -0,40
. '?‘ (1) second order, o, - 1.6, -0, 50
(iti) Fourth order, =, 0.75, x. 030,
aa 7 <0033, .0 - -000

-

The tollowing scheme jdentitfios the windows in-
valved {n thie compatation of the viriond power
spectral estinates,

(i) lanning sx: estisate computed by the in-

Jirect thod with the Hanning lag window

13) and wsing x< lags of the sample auto-

e et

(i)

(iti)

(iv)

coviariance function,

3-0-"

Bin

Codfrey-Tuke s dary

window was used with seements of the

sacnle function of lenvth T - vy
samples,

Parzen xx: Parzen data windew was used
with sepments of the sacple function of
leazth T = xx saaples.,

Spline xx-yy-zz: Spline data window of
order ko= xx was uwsed with sepreats of
the sauple function each with length

T - yy samples and displacement D =2z

samples botween fnitial points,

the graphs illuatrating these experiments are

found in Appendix 1,
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APPLIDIX 1

White Noise Process Pivst Order Aatore ressive Drocess
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